Solución D36º: Así se obtienen tres medias enteras


Acceder desde AQUÍ.

Antes de empezar a resolverlo vamos a recordar dos hechos sobre divisibilidad que se usarán en la resolución.

El primero es que si p es un número primo y p divide al producto mxn necesariamente p divide a m o a n.

El segundo hecho es que si m y n son dos números primos entre sí entonces si m divide a n x r necesariamente m divide a r.

Comencemos con la solución:

Si G es la media geométrica de p y q se tiene que G^2=pq por lo que p divide a G^2 lo que implica que p divide a G. Por tanto podemos escribir G=py. Tenemos, pues, que (py)^2=pq y simplificando obtenemos que q=py^2 para algún entero y.

Si A es la media aritmética de p y q tenemos que A=(p+q)/2 por lo que p+q=2A, es decir, p+py^2=2A, luego p x (1+y^2)=2A. Como 2A es par y p es impar concluimos que 1+y^2 es par por lo que y necesariamente es impar.

Por último, si H es la media armónica de p y q tenemos que H=2pq/(p+q), es decir, H x (p+q)=2pq. Por tanto H x (p+py^2)=2p x py^2 y simplificando dividiendo por p se obtiene que H x (1+y^2)=2py^2.

Tenemos, pues, que 1+y^2 divide a 2py^2; por otra parte 1+y^2 e y^2 son números consecutivos luego son primos entre sí, Podemos concluir entonces que 1+y^2 divide a 2p.

Recordemos que 1+y^2 es par por lo que si 1+y^2 divide a 2p obtenemos que (1+y^2)/2 es divisor de p.

Pero p es primo, por lo que sólo tiene dos divisores: 1 y p. Pero (1+y^2)/2 no puede ser 1 porque ello nos llevaría a que y=1 y, por tanto, a que p=q lo que no es posible porque exigimos que p y q fuesen distintos.

En definitiva, (1+y^2)/2=p. Si encontramos el menor y impar que haga que (1+y^2)/2 sea primo, tendremos resuelto el desafío. Ello se obtiene para y=15 con lo que p=113 y q=25425.

Solución de Pedro Correa: Demostración desafío 36
Solución José Luis Miota: (pulsar para agrandar)

4 comentarios

Archivado bajo OTROS

4 Respuestas a “Solución D36º: Así se obtienen tres medias enteras

  1. jabon

    Mi respuesta es prácticamente similar a la de Maito, por no decir idéntica.

  2. Josep

    Un razonamiento alternativo:
    H es impar, pues H=G^2/A y G es impar.
    H=2py^2/(1+y^2). Como y^2/(1+y^2)<1, entonces H<2p.
    Hagamos H=2p-i, donde i es impar.
    Sustituyendo H arriba, queda y^2=2p/i – 1
    Como i solo puede ser 1, y^2=2p-1, que nos lleva a la misma conclusión.

  3. Divagante

    A mi me gustan los problemas como el del gusano y el cono, que tienen una solucion matematica de 2 páginas y una solucion imaginativa de 2 lineas. Este lo he visto demasiado matematico

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s