EL DESAFÍO 55. EL CUADRILÁTERO DE SEBAS.

Los amigos Sebas, Lado y Perímetro se encuentran para tomar un refresco y mientras esperan que les sirvan deciden pasar el rato discutiendo de matemática, ayudados únicamente de lápiz y papel.

Sebas: ¿Cual es el cuadrilátero de lados números naturales, el mayor de los cuales mide 67, que tiene una diagonal igual al diámetro de la circunferencia en la que está inscrito?

El camarero, que se encontrada sirviendo los refrescos en el momento en que Sebas planteó el problema, se une a la conversación diciendo: "Entonces el área también es un entero y el perímetro un par".

Los tres se miran sorprendidos, ¿tiene razón el camarero?

Después de ensuciar papel, la conversación sigue:

Lado: Con estos datos nos es imposible resolver el problema.

Sebas: Tenéis razón, os daré otros datos; a ti, Lado, te diré el valor de uno de sus lados y a ti, Perímetro, el de su perímetro.

Al conocer estos últimos datos ambos consultan sus cálculos y...

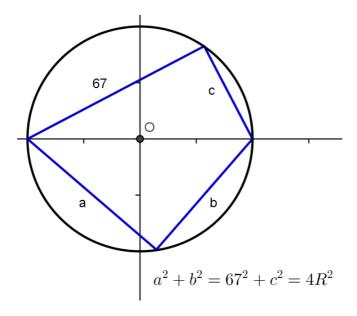
Lado: De poco me ha servido la información, sigo sin poder resolverlo.

Perímetro: Lo mismo me pasa a mí.

Lado: Yo no he podido resolverlo, tampoco Perímetro, mucho me temo que no lleguemos a la solución.

Perímetro: Pues yo ahora sí sé las dimensiones.

Lado: Entonces si tú las sabes, yo también las sé.


¿Cuáles son las dimensiones de los lados del cuadrilátero?

SOLUCIÓN.

Hallar a, b, c enteros positivos tales que $a^2 + b^2 = 67^2 + c^2$ (=diametro² = 4R²)

$$0 < b \le a < 67$$

Debe ser $a \ge 48$, porque $2 \ a^2 \ge a^2 + b^2 = 67^2 + c^2 > 67^2 => a^2 > 67^2 / 2 => a > 67/\sqrt{2} = 47,37...$

Así un poco a lo bruto ("a" desde 48 hasta 66, "b" desde 1 hasta "a") me salen unas 28 posibles soluciones:

а	b	С	Perímetro	Area
49	47	11	174	1520
50	45	6	168	1326
52	43	8	170	1386
53	41	1	162	1120
53	43	13	176	1575
53	44	16	180	1702
53	47	23	190	2016
53	52	32	204	2450
56	37	4	164	1170
57	41	21	186	1872
58	35	10	170	1350
58	45	30	200	2310
59	32	4	162	1078
59	33	9	168	1275
59	37	19	182	1728
59	43	29	198	2240
59	48	36	210	2622
61	28	4	160	988
61	32	16	176	1512
61	38	26	192	2030
61	52	44	224	3060
62	29	14	172	1368
63	23	3	156	825
63	31	21	182	1680
65	17	5	154	720
65	25	19	176	1449
65	35	31	198	2176
66	13	6	152	630

Para un lado conocido en algunos casos sólo hay una solución. Por ejemplo si sabemos que el valor de un lado es "1" entonces podemos asegurar que el cuadrilátero es el de lados 67-53-41-1 porque el "1" sólo está en una de las filas de la tabla anterior. Con los siguientes 23 valores *Lado* podría resolver el problema:

Así que a *Lado* le han dicho uno de los otros valores, es decir, unos de estos 24 valores:

Para un perímetro conocido en algunos casos sólo hay una solución. Por ejemplo la primera fila de la tabla anterior es la única que tiene perímetro 174, pero hay 2 filas que tienen perímetro 168.

Como *Perímetro* sabiendo el perímetro no es capaz de dar la solución, tiene que ser un perímetro con varias soluciones (162, 168, 170, 176, 182 ó 198). Así podemos reducir la tabla anterior y a *Perímetro* le quedan estas 13 posibles soluciones:

а	b	С	Perímetro	Area
53	41	1	162	1120
59	32	4	162	1078
50	45	6	168	1326
59	33	9	168	1275
52	43	8	170	1386
58	35	10	170	1350
53	43	13	176	1575
61	32	16	176	1512
65	25	19	176	1449
59	37	19	182	1728
63	31	21	182	1680
59	43	29	198	2240
65	35	31	198	2176

Ahora *Lado* sabe que *Perímetro* tampoco lo puede resolver, así que *Lado* también sabe que la solución está entre las 13 de la tabla anterior. Si a *Lado* le hubieran dado por ejemplo el valor "6" ó el "45" (o cualquiera de los que he marcado en AZUL) sabría ahora la solución porque cualquiera de estos valores azules sólo está en una fila de la tabla anterior. Así que seguro que no le dieron ninguno de estos valores azules (tampoco ninguno de los negros, que esos están descartados ya antes).

Cuando *Perímetro* sabe que *Lado* no lo puede resolver, entonces sí que descubre la solución. ¿Por qué?

A Perímetro le han dicho que perímetro=168, en principio tenía 2 posibles soluciones, pero como no puede ser 50-45-6, la solución es

Lados: 67 - 59 - 33 - 9, Perímetro: 168

Si Perímetro tuviera cualquier otro valor (162, 170, 176, 182 ó 198) no podría resolverlo, porque no hay otras filas "azulnegras" para descartar.

Recapitulando, la conversación ha sido así:

Sebas: ¿Cual es el cuadrilátero de lados números naturales, el mayor de los cuales mide 67, que tiene una diagonal igual al diámetro de la circunferencia en la que está

Después de ensuciar papel, L y P llegan a la conclusión de que hay 28 posibles soluciones, y la conversación sigue:

Lado: Con estos datos nos es imposible resolver el problema.

Sebas: Tenéis razón, os daré otros datos; a ti, Lado, te diré el valor de uno de sus lados (le dice que hay un lado que mide 59) y a ti, Perímetro, el de su perímetro (le dice que el perímetro vale 168).

Al conocer estos últimos datos ambos consultan sus cálculos y...

Lado: De poco me ha servido la información, sigo sin poder resolverlo. De las posibles 28 soluciones le quedan ahora 5 posibles que tienen un lado 59.

Perímetro: Lo mismo me pasa a mí. Hay 2 posibles soluciones con perímetro 168.

а	a b c		Perímetro	Area		
50	45	6	168	1326		
59	33	9	168	1275		

Lado: Yo no he podido resolverlo, tampoco Perímetro, mucho me temo que no lleguemos a la solución. Como L sabe que P no lo puede resolver, puede hacer la tabla de 13 posibles soluciones, y puede descartar una de las 5 posibles que tienen lado 59, le siguen quedando 4 posibles soluciones.

а	b	С	Perímetro	Area
53	41	1	162	1120
59	32	4	162	1078
50	45	6	168	1326
59	33	9	168	1275
52	43	8	170	1386
58	35	10	170	1350
53	43	13	176	1575
61	32	16	176	1512
65	25	19	176	1449
59	37	19	182	1728
63	31	21	182	1680
59	43	29	198	2240
65	35	31	198	2176

Perímetro: Pues yo ahora sí sé las dimensiones. Como L sigue sin saber resolverlo la solución no puede ser 50-45-6 y ha de ser la otra.

Lado: Entonces si tú las sabes, yo también las sé.

ÁREA ENTERA Y PERÍMETRO PAR.

Perímetro = 67 + a + b + c

Area =
$$(67c/2) + (ab/2) = (67c + ab)/2$$

De la igualdad

$$a^2 + b^2 = 67^2 + c^2$$

podemos deducir que sólo hay 3 casos distintos para la paridad de a, b y c. (*)

а	b	С
IMPAR	IMPAR	IMPAR
IMPAR	PAR	PAR
PAR	IMPAR	PAR

Y podemos completar esta tabla, teniendo en cuenta cómo juega la paridad con suma y producto

PAR+PAR = PAR IMPAR+IMPAR = PAR PAR+IMPAR = IMPAR

PAR*PAR = PAR
PAR*IMPAR = PAR
IMPAR*IMPAR = IMPAR

а	b	С	a+b+c	Perímetro	a*b	67*c	ab + 67c
IMPAR	IMPAR	IMPAR	IMPAR	PAR	IMPAR	IMPAR	PAR
IMPAR	PAR	PAR	IMPAR	PAR	PAR	PAR	PAR
PAR	IMPAR	PAR	IMPAR	PAR	PAR	PAR	PAR

Area = PAR / 2 = entero.

(*) Para ver que sólo hay 3 casos posibles de paridades, sin usar congruencias que siempre me cuesta entender, se puede por ejemplo distinguir 2 casos, c par y c impar, y sale fácil.

HALLAR LOS 28 CASOS "A MANO" (o con "calculadora simple").

De los 3 casos como ejemplo vemos el caso a-b-c PAR-IMPAR-PAR

$$a = 2 x$$
; $b = 2 y + 1$; $c = 2 z$; $48 \le a \le 66$; $1 \le b \le a$

De la igualdad $\mathbf{a^2 + b^2} = 67^2 + \mathbf{c^2}$, llegamos a $z^2 = x^2 + y^2 + y - 1122$

Rellenamos cada casilla de esta tabla sumando fila columna y restanto 1122:

			a ->	48	50	52	54	56	58	60	62	64	66
			x ->	24	25	26	27	28	29	30	31	32	33
			x^2 ->	576	625	676	729	784	841	900	961	1024	1089
b	у	y^2+y											
3	1	2		-544	-495	-444	-391	-336	-279	-220	-159	-96	-31
5	2	6		-540	-491	-440	-387	-332	-275	-216	-155	-92	-27
7	3	12		-534	-485	-434	-381	-326	-269	-210	-149	-86	-21
9	4	20		-526	-477	-426	-373	-318	-261	-202	-141	-78	-13
11	5	30		-516	-467	-416	-363	-308	-251	-192	-131	-68	-3
13	6	42		-504	-455	-404	-351	-296	-239	-180	-119	-56	9
15	7	56		-490	-441	-390	-337	-282	-225	-166	-105	-42	23
17	8	72		-474	-425	-374	-321	-266	-209	-150	-89	-26	39
19	9	90		-456	-407	-356	-303	-248	-191	-132	-71	-8	57
21	10	110		-436	-387	-336	-283	-228	-171	-112	-51	12	77
23	11	132		-414	-365	-314	-261	-206	-149	-90	-29	34	99
25	12	156		-390	-341	-290	-237	-182	-125	-66	-5	58	123
27	13	182		-364	-315	-264	-211	-156	-99	-40	21	84	149
29	14	210		-336	-287	-236	-183	-128	-71	-12	49	112	177
31	15	240		-306	-257	-206	-153	-98	-41	18	79	142	207
33	16	272		-274	-225	-174	-121	-66	-9	50	111	174	239
35	17	306		-240	-191	-140	-87	-32	25	84	145	208	273
37	18	342		-204	-155	-104	-51	4	61	120	181	244	309
39	19	380		-166	-117	-66	-13	42	99	158	219	282	347
41	20	420		-126	-77	-26	27	82	139	198	259	322	387
43	21	462		-84	-35	16	69	124	181	240	301	364	429
45	22	506		-40	9	60	113	168	225	284	345	408	473
47	23	552		6	55	106	159	214	271	330	391	454	519
49	24	600			103	154	207	262	319	378	439	502	567
51	25	650				204	257	312	369	428	489	552	617
53	26	702					309	364	421	480	541	604	669
55	27	756						418	475	534	595	658	723
57	28	812							531	590	651	714	779
59	29	870								648	709	772	837
61	30	930									769	832	897
63	31	992										894	959
65	32	1056											1023

Las rojas no haría falta ni calcularlas, porque vemos que al sumar fila-columna es menor que 1122.

Los valores que son cuadrados (es decir, los azules) son las soluciones. Y para saber si es o no cuadrado hacemos previamente esta tablita:

	1				
С	Z	z^2			
2	1	1			
4	2	4			
6	3	9			
8	4	16			
10	5	25			
12	6	36			
14	7	49			
16	8	64			
18	9	81			
20	10	100			
22	11	121			
24	12	144			
26	13	169			
28	14	196			
30	15	225			
32	16 17	256			
34	17	289			
36	18	324			
38	19	361			
40	20	400			
42	21	441			
44	22	484			
46	23	529			
48	24	576			
50	25	625			
52	26	676			
54	27	729			
56	28	784			
58	29	841			
60	30	900			
62	31	961			
64	32	1024			
66	33	1089			

Ejemplo, a=66, b=13

1.089 + 42 - 1.122 = 9, que es cuadrado